• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Institute of Polymer Technology (LKT)
  • FAUTo the central FAU website
Suche öffnen
  • en
  • de
  • Faculty of Engineering
  • Department of Mechanical Engineering
  • UnivIS

Institute of Polymer Technology (LKT)

Navigation Navigation close
  • The Team
    • Current Employees
    • Former Employees
    • Guest Scientists
    Portal The Team
  • Career
  • Research
    • Research Focuses
    • Laboratories and Technical Center
    • Publications
    Portal Research
  • Teaching
    • Teaching Offers
    • Student Works
    • Excursions
    • International Exchange
    Portal Teaching
  • Advanced Education
  • News
  • Contact
  1. Home
  2. Research
  3. Research Focuses
  4. New Materials and Material Properties
  5. Thermally Conductive Polymers

Thermally Conductive Polymers

In page navigation: Research
  • Research Focuses
    • Additive Manufacturing
    • New Materials and Material Properties
      • Thermoplastic Composites
      • Thermally Conductive Polymers
      • Electrical Properties
    • Processing
    • Joining Technology and Tribology
    • Downloads
  • Laboratories and Processing Center
  • Publications

Thermally Conductive Polymers

Copperball in Polymer Matrix

The sector of mechatronics engineering is characterized by the tendency towards miniaturization and the integration of components, which certainly increases technological demands. Therefore, new approaches are constantly becoming more and more necessary. An approach to find a solution for these tasks is represented by employing functional plastics with defined thermal and electrical properties. This is a promising option to integrate additional functions into complex components. Plastics are given their electrical and/or thermal functions by metal particles or fillers on a carbon or graphite basis added. Additionally, in some cases ceramic fillers are added as an alternative to increase thermal conductivity. Ceramic fillers such as AlN, Al2O3 or BN are able to achieve heat conductivities of up to 10 W/mK. Due to their electrical insulation capacities, these materials are suitable for casings in electronic components to dissipate heat.

Fillers with good thermal and electrical conductivity properties, e.g. copper, can lead to values of heat conductivity up to 20 W/mK – yet, this implies a loss of electrical insulation. With heat conduction values up to 104 S/cm, such plastics are well-suited as a built-in anti-electrostatic feature or for electromagnetic screen attenuation. Moreover, highly conductive compounds can also be used to conduct electricity in e.g. heating elements.

When it comes to manufacturing complex components with thermal and electrical functions via techniques such as injection molding or extrusion, processing conditions vary and the engineer has such factors into account, as well as optimization possibilities and processes alignment. In addition, the final component’s properties are affected by both material properties as well as processing. Anisotropic fillers and process-related filler orientations result in local and overall anisotropic properties. This fact is essential when components are designed to meet the demands of application and function. To reach this target, a vast range of instruments is at hand for a simulative lay-out of processes and components.

 


Dr.-Ing. Uta Rösel

Chief Engineer

Institute of Polymer Technology
Processing (Head of Department)

  • Phone number: +49913185-71002
  • Email: uta.ur.roesel@fau.de
Institute of Polymer Technology (LKT)
Friedrich-Alexander-University Erlangen-Nuremberg

Am Weichselgarten 10
91058 Erlangen-Tennenlohe
Germany
  • Imprint
  • Privacy
  • Accessibility
  • Linkedin
Up